161 research outputs found

    A Simple Model to Estimate Plantarflexor Muscle–Tendon Mechanics and Energetics During Walking With Elastic Ankle Exoskeletons

    Get PDF
    A recent experiment demonstrated that when humans wear unpowered elastic ankle exoskeletons with intermediate spring stiffness they can reduce their metabolic energy cost to walk by ~7%. Springs that are too compliant or too stiff have little benefit. The purpose of this study was to use modeling and simulation to explore the muscle-level mechanisms for the ‘sweet-spot’ in stiffness during exoskeleton assisted walking

    A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO) powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO) and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs.</p> <p>Methods</p> <p>Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1) without wearing the orthosis, 2) wearing the orthosis with artificial muscles turned off, 3) wearing the orthosis activated under direct proportional myoelectric control, and 4) wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics.</p> <p>Results</p> <p>The KAFO produced ~22%–33% of the peak knee flexor moment, ~15%–33% of the peak extensor moment, ~42%–46% of the peak plantar flexor moment, and ~83%–129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 ± 0.04) and knee ( r = 0.95 ± 0.04) joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 ± 0.13 for ankle, p = 0.05, and r = 0.90 ± 0.03 for knee, p = 0.17).</p> <p>Conclusion</p> <p>The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current orthosis design provided knee torques smaller than the ankle torques due to the trade-off in torque and range of motion that occurs with artificial pneumatic muscles. Future KAFO designs could incorporate cams, gears, or different actuators to transmit greater torque to the knee.</p

    The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury

    Get PDF
    BACKGROUND: Powered lower limb orthoses could reduce therapist labor during gait rehabilitation after neurological injury. However, it is not clear how patients respond to powered assistance during stepping. Patients might allow the orthoses to drive the movement pattern and reduce their muscle activation. The goal of this study was to test the effects of robotic assistance in subjects with incomplete spinal cord injury using pneumatically powered ankle-foot orthoses. METHODS: Five individuals with chronic incomplete spinal cord injury (ASIA C-D) participated in the study. Each subject was fitted with bilateral ankle-foot orthoses equipped with artificial pneumatic muscles to power ankle plantar flexion. Subjects walked on a treadmill with partial bodyweight support at four speeds (0.36, 0.54, 0.72 and 0.89 m/s) under three conditions: without wearing orthoses, wearing orthoses unpowered (passively), and wearing orthoses activated under pushbutton control by a physical therapist. Subjects also attempted a fourth condition wearing orthoses activated under pushbutton control by them. We measured joint angles, electromyography, and orthoses torque assistance. RESULTS: A therapist quickly learned to activate the artificial pneumatic muscles using the pushbuttons with the appropriate amplitude and timing. The powered orthoses provided ~50% of peak ankle torque. Ankle angle at stance push-off increased when subjects walked with powered orthoses versus when they walked with passive-orthoses (ANOVA, p < 0.05). Ankle muscle activation amplitudes were similar for powered and passive-orthoses conditions except for the soleus (~13% lower for powered condition; p < 0.05). Two of the five subjects were able to control the orthoses themselves using the pushbuttons. The other three subjects found it too difficult to coordinate pushbutton timing. Orthoses assistance and maximum ankle angle at push-off were smaller when the subject controlled the orthoses compared to when the therapist-controlled the orthoses (p < 0.05). Muscle activation amplitudes were similar between the two powered conditions except for tibialis anterior (~31% lower for therapist-controlled; p < 0.05). CONCLUSION: Mechanical assistance from powered ankle-foot orthoses improved ankle push-off kinematics without substantially reducing muscle activation during walking in subjects with incomplete spinal cord injury. These results suggest that robotic plantar flexion assistance could be used during gait rehabilitation without promoting patient passivity

    Kinematics and muscle activity of individuals with incomplete spinal cord injury during treadmill stepping with and without manual assistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treadmill training with bodyweight support and manual assistance improves walking ability of patients with neurological injury. The purpose of this study was to determine how manual assistance changes muscle activation and kinematic patterns during treadmill training in individuals with incomplete spinal cord injury.</p> <p>Methods</p> <p>We tested six volunteers with incomplete spinal cord injury and six volunteers with intact nervous systems. Subjects with spinal cord injury walked on a treadmill at six speeds (0.18–1.07 m/s) with body weight support with and without manual assistance. Healthy subjects walked at the same speeds only with body weight support. We measured electromyographic (EMG) and kinematics in the lower extremities and calculated EMG root mean square (RMS) amplitudes and joint excursions. We performed cross-correlation analyses to compare EMG and kinematic profiles.</p> <p>Results</p> <p>Normalized muscle activation amplitudes and profiles in subjects with spinal cord injury were similar for stepping with and without manual assistance (ANOVA, p > 0.05). Muscle activation amplitudes increased with increasing speed (ANOVA, p < 0.05). When comparing spinal cord injury subject EMG data to control subject EMG data, neither the condition with manual assistance nor the condition without manual assistance showed a greater similarity to the control subject data, except for vastus lateralis. The shape and timing of EMG patterns in subjects with spinal cord injury became less similar to controls at faster speeds, especially when walking without manual assistance (ANOVA, p < 0.05). There were no consistent changes in kinematic profiles across spinal cord injury subjects when they were given manual assistance. Knee joint excursion was ~5 degrees greater with manual assistance during swing (ANOVA, p < 0.05). Hip and ankle joint excursions were both ~3 degrees lower with manual assistance during stance (ANOVA, p < 0.05).</p> <p>Conclusion</p> <p>Providing manual assistance does not lower EMG amplitudes or alter muscle activation profiles in relatively higher functioning spinal cord injury subjects. One advantage of manual assistance is that it allows spinal cord injury subjects to walk at faster speeds than they could without assistance. Concerns that manual assistance will promote passivity in subjects are unsupported by our findings.</p

    A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study

    Get PDF
    Background: In persons post-stroke, diminished ankle joint function can contribute to inadequate gait propulsion. To target paretic ankle impairments, we developed a neuromechanics-based powered ankle exoskeleton. Specifically, this exoskeleton supplies plantarflexion assistance that is proportional to the user’s paretic soleus electromyography (EMG) amplitude only during a phase of gait when the stance limb is subjected to an anteriorly directed ground reaction force (GRF). The purpose of this feasibility study was to examine the short-term effects of the powered ankle exoskeleton on the mechanics and energetics of gait. Methods: Five subjects with stroke walked with a powered ankle exoskeleton on the paretic limb for three 5 minute sessions. We analyzed the peak paretic ankle plantarflexion moment, paretic ankle positive work, symmetry of GRF propulsion impulse, and net metabolic power. Results: The exoskeleton increased the paretic plantarflexion moment by 16% during the powered walking trials relative to unassisted walking condition (p \u3c .05). Despite this enhanced paretic ankle moment, there was no significant increase in paretic ankle positive work, or changes in any other mechanical variables with the powered assistance. The exoskeleton assistance appeared to reduce the net metabolic power gradually with each 5 minute repetition, though no statistical significance was found. In three of the subjects, the paretic soleus activation during the propulsion phase of stance was reduced during the powered assistance compared to unassisted walking (35% reduction in the integrated EMG amplitude during the third powered session). Conclusions: This feasibility study demonstrated that the exoskeleton can enhance paretic ankle moment. Future studies with greater sample size and prolonged sessions are warranted to evaluate the effects of the powered ankle exoskeleton on overall gait outcomes in persons post-stroke

    Six degree-of-freedom analysis of hip, knee, ankle and foot provides updated understanding of biomechanical work during human walking

    Get PDF
    Measuring biomechanical work performed by humans and other animals is critical for understanding muscle–tendon function, jointspecific contributions and energy-saving mechanisms during locomotion. Inverse dynamics is often employed to estimate jointlevel contributions, and deformable body estimates can be used to study work performed by the foot. We recently discovered that these commonly used experimental estimates fail to explain whole-body energy changes observed during human walking. By re-analyzing previously published data, we found that about 25% (8 J) of total positive energy changes of/about the body’s center-of-mass and \u3e30% of the energy changes during the Push-off phase of walking were not explained by conventional joint- and segment-level work estimates, exposing a gap in our fundamental understanding of work production during gait. Here, we present a novel Energy-Accounting analysis that integrates various empirical measures of work and energy to elucidate the source of unexplained biomechanical work. We discovered that by extending conventional 3 degree-of-freedom (DOF) inverse dynamics (estimating rotational work about joints) to 6DOF (rotational and translational) analysis of the hip, knee, ankle and foot, we could fully explain the missing positive work. This revealed that Push-off work performed about the hip may be \u3e50% greater than conventionally estimated (9.3 versus 6.0 J, P=0.0002, at 1.4 m s−1 ). Our findings demonstrate that 6DOF analysis (of hip– knee–ankle–foot) better captures energy changes of the body than more conventional 3DOF estimates. These findings refine our fundamental understanding of how work is distributed within the body, which has implications for assistive technology, biomechanical simulations and potentially clinical treatment

    Modeling age-related changes in muscle-tendon dynamics during cyclical contractions in the rat gastrocnemius

    Get PDF
    Efficient muscle-tendon performance during cyclical tasks is dependent on both active and passive mechanical tissue properties. Here we examine whether age-related changes in the properties of muscle-tendon units (MTUs) compromise their ability to do work and utilize elastic energy storage. We empirically quantified passive and active properties of the medial gastrocnemius muscle and material properties of the Achilles tendon in young (∼6 mo) and old (∼32 mo) rats. We then used these properties in computer simulations of a Hill-type muscle model operating in series with a Hookean spring. The modeled MTU was driven through sinusoidal length changes and activated at a phase that optimized muscle-tendon tuning to assess the relative contributions of active and passive elements to the force and work in each cycle. In physiologically realistic simulations where young and old MTUs started at similar passive forces and developed similar active forces, the capacity of old MTUs to store elastic energy and produce positive work was compromised. These results suggest that the observed increase in the metabolic cost of locomotion with aging may be in part due to the recruitment of additional muscles to compensate for the reduced work at the primary MTU. Furthermore, the age-related increases in passive stiffness coupled with a reduced active force capacity in the muscle can lead to shifts in the force-length and force-velocity operating range that may significantly impact mechanical and metabolic performance. Our study emphasizes the importance of the interplay between muscle and tendon mechanical properties in shaping MTU performance during cyclical contractions

    The biomechanics and energetics of human running using an elastic knee exoskeleton

    Get PDF
    While the effects of series compliance on running biomechanics are well documented, the effects of parallel compliance are known only for the simpler case of hopping. As many practical exoskeletal and orthotic designs act in parallel with the leg, it is desirable to understand the effects of such an intervention. Spring-like forces offer a natural choice of perturbation for running, as they are both biologically motivated and energetically inexpensive to implement. To this end, we investigate the hypothesis that the addition of an external elastic element at the knee during the stance phase of running results in a reduction in knee extensor activation so that total joint quasi-stiffness is maintained. An exoskeletal knee brace consisting of an elastic element engaged by a clutch is used to provide this stance phase extensor torque. Motion capture of five subjects is used to investigate the consequences of running with this device. No significant change in leg stiffness or total knee stiffness is observed due to the activation of the clutched parallel knee spring. However, this pilot data suggests differing responses between casual runners and competitive long-distance runners, whose total knee torque is increased by the device. Such a relationship between past training and effective utilization of an external force is suggestive of limitations on the applicability of assistive devices

    Individual limb mechanical analysis of gait following stroke

    Get PDF
    The step-to-step transition of walking requires significant mechanical and metabolic energy to redirect the center of mass. Inter-limb mechanical asymmetries during the step-to-step transition may increase overall energy demands and require compensation during single-support. The purpose of this study was to compare individual limb mechanical gait asymmetries during the step-to-step transitions, single-support and over a complete stride between two groups of individuals following stroke stratified by gait speed (≥0.8 m/s o

    Unconstrained muscle-tendon workloops indicate resonance tuning as a mechanism for elastic limb behavior during terrestrial locomotion

    Get PDF
    The fields of terrestrial biomechanics and bio-inspired robotics have identified spring-like limb mechanics as critical to stable and efficient gait. In biological systems, distal muscle groups cycling large amounts of energy in series tendons are a primary source of compliance. To investigate the origins of this behavior, we coupled a biological muscle-tendon to a feedback controlled servomotor simulating the inertial/gravitational environment of terrestrial gait. We drove this bio-robotic system via direct nerve stimulation across a range of frequencies to explore the influence of neural control on muscle-tendon interactions. This study concluded that by matching stimulation frequency to that of the passive biomechanical system, muscle-tendon interactions resulting in spring-like behavior occur naturally and do not require closed-loop neural control
    • …
    corecore